3,359 research outputs found

    Mid-Neoproterozoic (ca. 830-800 Ma) metamorphic P-T paths link Tarim to the circum-Rodinia subduction-accretion system

    Get PDF
    Long-lived exterior accretionary orogeny shapes tectonothermal evolution of the peripheral building blocks of supercontinents and leads to considerable crustal growth. However, such accretionary orogeny has only been locally recognized for the Rodinia supercontinent. Here a suite of newly discovered mid-Neoproterozoic high-grade metamorphic rocks in the northern Tarim Craton, NW China, are used to test the exterior accretion hypothesis for Rodinia. These rocks occur as dark-colored mafic and calc-silicate boudins in impure marbles and mica schists. Geochemical data suggest a protolith of arc-related basalts metasomatized by Ca-rich fluids. Mineral assemblages, phase diagram modeling, and mineral compositions for a garnet pyroxenite and a garnet clinopyroxene gneiss reveal upper amphibolite to high-pressure granulite facies peak metamorphism (660–700°C, 11–12 kbar) following a counterclockwise P-T path, which is characterized by prograde burial and heating, followed by near-isothermal burial and retrograde exhumation and cooling. This P-T path is interpreted to have recorded crustal thickening of an earlier magmatic arc transformed to a fore arc by subduction erosion and subsequent burial along bent isotherms near the subduction channel. All studied samples record ca. 830–800 Ma metamorphic zircon U-Pb ages, which probably date the early exhumation and cooling according to Ti-in-zircon temperatures, zircon rare earth element patterns, and Hf isotopes. This is the first mid-Neoproterozoic P-T-t path in Tarim, and it provides metamorphic evidence for a mid-Neoproterozoic advancing-type accretionary orogeny, which is coeval with the initial breakup events of Rodinia and thus links Tarim to the circum-Rodinia accretion system, supporting the peripheral subduction model

    Development of integrated thermionic circuits for high-temperature applications

    Get PDF
    Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments

    Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability

    Get PDF
    AbstractIntroductionLoss of synapses best correlates to cognitive deficits in Alzheimer's disease (AD) in which oligomeric neurotoxic species of amyloid-β appears to contribute synaptic pathology. Although a number of clinical pathologic studies have been performed with limited sample size, there are no systematic studies encompassing large samples. Therefore, we performed a meta-analysis study.MethodsWe identified 417 publications reporting postmortem synapse and synaptic marker loss from AD patients. Two meta-analyses were performed using a single database of subselected publications and calculating the standard mean differences.ResultsMeta-analysis confirmed synaptic loss in selected brain regions is an early event in AD pathogenesis. The second meta-analysis of 57 synaptic markers revealed that presynaptic makers were affected more than postsynaptic markers.DiscussionThe present meta-analysis study showed a consistent synaptic loss across brain regions and that molecular machinery including endosomal pathways, vesicular assembly mechanisms, glutamate receptors, and axonal transport are often affected

    Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated

    Association between the DTNBP1 gene and intelligence: a case-control study in young patients with schizophrenia and related disorders and unaffected siblings

    Get PDF
    BACKGROUND: The dystrobrevin-binding protein 1 (DTNBP1) gene is a susceptibility gene for schizophrenia. There is growing evidence that DTNPB1 contributes to intelligence and cognition. In this study, we investigated association between single nucleotide polymorphisms (SNPs) in the DTNBP1 gene and intellectual functioning in patients with a first episode of schizophrenia or related psychotic disorder (first-episode psychosis, FEP), their healthy siblings, and unrelated controls. METHODS: From all subjects IQ measurements were obtained (verbal IQ [VIQ], performance IQ [PIQ], and full scale IQ [FSIQ]). Seven SNPs in the DTNBP1 gene were genotyped using single base primer extension and analyzed by matrix-assisted laser deionization mass spectrometry (MALDI-TOF). RESULTS: Mean VIQ, PIQ, and FSIQ scores differed significantly (p < 0.001) between patients, siblings, and controls. Using a family-based and a case-control design, several single SNPs were significantly associated with IQ scores in patients, siblings, and controls. CONCLUSION: Although preliminary, our results provide evidence for association between the DTNBP1 gene and intelligence in patients with FEP and their unaffected siblings. Genetic variation in the DTNBP1 gene may increase schizophrenia susceptibility by affecting intellectual functioning

    The Phase Transition to a Square Vortex Lattice in Type-II Superconductors with Fourfold Anisotropy

    Full text link
    We investigate the stability of the square vortex lattice which has been recently observed in experiments on the borocarbide family of superconductors. Taking into account the tetragonal symmetry of these systems, we add fourfold symmetric fourth-derivative terms to the Ginzburg-Landau(GL) free energy. At Hc2H_{c2} these terms may be treated perturbatively to lowest order to locate the transition from a distorted hexagonal to a square vortex lattice. We also solve for this phase boundary numerically in the strongly type-II limit, finding large corrections to the lowest-order perturbative results. We calculate the relative fourfold Hc2H_{c2} anisotropy for field in the xyxy plane to be 4.5% at the temperature, Tc□T_c^{\Box}, where the transition occurs at Hc2H_{c2} for field along the zz axis. This is to be compared to the 3.6% obtained in the perturbative calculation. Furthermore, we find that the phase boundary in the H−TH-T phase diagram has positive slope near Hc2H_{c2}.Comment: 15 pages including 2 figures, LaTe

    Persistent spin splitting of a two-dimensional electron gas in tilted magnetic fields

    Full text link
    By varying the orientation of the applied magnetic field with respect to the normal of a two-dimensional electron gas, the chemical potential and the specific heat reveal persistent spin splitting in all field ranges. The corresponding shape of the thermodynamic quantities distinguishes whether the Rashba spin-orbit interaction RSOI, the Zeeman term or both dominate the splitting. The interplay of the tilting of the magnetic field and RSOI resulted to an amplified splitting in weak fields. The effects of changing the RSOI strength and the Landau level broadening are also investigated.Comment: 10 pages, 5 figure

    Nature of 45 degree vortex lattice reorientation in tetragonal superconductors

    Full text link
    The transformation of the vortex lattice in a tetragonal superconductor which consists of its 45 degree reorientation relative to the crystal axes is studied using the nonlocal London model. It is shown that the reorientation occurs as two successive second order (continuous) phase transitions. The transition magnetic fields are calculated for a range of parameters relevant for borocarbide superconductors in which the reorientation has been observed

    Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy

    Get PDF
    Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata. Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola. We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production
    • …
    corecore